Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2022  |  Volume : 32  |  Issue : 3  |  Page : 137-144

Chest shape influences ventricular-arterial coupling parameters in infants with pectus excavatum

1 Division of Cardiology, MultiMedica IRCCS, Milan, Italy
2 Division of Cardiology, Policlinico San Giorgio, Pordenone, Italy
3 Division of Neonatology, MultiMedica IRCCS, Via San Vittore, Milan, Italy

Correspondence Address:
Andrea Sonaglioni
Division of Neonatology, Ospedale San Giuseppe MultiMedica IRCCS, Via San Vittore 12, 20123 Milano
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jcecho.jcecho_2_22

Rights and Permissions

Background: The present study was designed to investigate the possible influence of chest shape, noninvasively assessed by modified Haller index (MHI), on ventricular-arterial coupling (VAC) parameters in a population of term infants with pectus excavatum (PE). Methods: Sixteen consecutive PE infants (MHI >2.5) and 44 infants with normal chest shape (MHI ≤2.5) were prospectively analyzed. All infants underwent evaluation by a neonatologist, transthoracic echocardiography, and MHI assessment (ratio of chest transverse diameter over the distance between sternum and spine) within 3 days of life. Arterial elastance index (EaI) was determined as end-systolic pressure (ESP)/stroke volume index, whereas end-systolic elastance index (EesI) was measured as ESP/left ventricular end-systolic volume index. Finally, VAC was derived by the Ea/Ees ratio. Results: At 2.1 ± 1 days after birth, compared to controls (MHI = 2.01 ± 0.2), PE infants (MHI = 2.76 ± 0.2) were diagnosed with significantly smaller size of all cardiac chambers. Biventricular systolic function, left ventricular filling pressures, and pulmonary hemodynamics were similar in both the groups of infants. Both EaI (4.4 ± 1.0 mmHg/ml/m2 vs. 3.4 ± 0.6 mmHg/ml/m2, P < 0.001) and EesI (15.1 ± 3.0 mmHg/ml/m2 vs. 12.7 ± 2.5 mmHg/ml/m2, P = 0.003) were significantly increased in PE infants than controls. The resultant VAC (0.30 ± 0.10 vs. 0.30 ± 0.08, P > 0.99) was similar in both the groups of infants. Both EaI (r = 0.93) and EesI (r = 0.87) were linearly correlated with MHI in PE infants, but not in controls. On the other hand, no correlation was found between MHI and VAC in both the groups of infants. Conclusions: Chest deformity strongly influences both Ea and Ees in PE infants, due to extrinsic cardiac compression, in the absence of any intrinsic cardiovascular dysfunction.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded59    
    Comments [Add]    

Recommend this journal